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Abstract 

 

Random bit generators find many critical application areas in  engineering and science. In this work, coupled 

robust chaotic maps based random bit generation algorithms are studied for cryptosystems. Some possible 

coupling approaches are described for the formation of high-dimensional chaotic maps to get a strong 

mixing nature for use in secure applications. To extract high-quality random bits from the chaotic maps, a 

post-processing approach is designed.  The performances of the chaotic random bit generators are assessed 

through different statistical methods. The effectiveness of the approaches is validated with an image 

encryption algorithm. 
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Introduction 

Chaotic functions are a very useful building block for many distinct cryptographic structures. Examples 

include constructing message authentication codes and ensuring security against chosen-plaintext attacks. 

Their deterministic and aperiodic properties enable a clean and elegant analysis of the cryptosystems. The 

security of such schemes relies on the parameters and initial conditions of the chaotic systems but not related 

to the computational bounds or stiffness. 

In recent years, chaos based random bit generations have been studied for cryptographic applications 

because the chaotic systems have cryptographic properties like ergodicity, deterministic dynamics, 

aperiodicity and sensitivity to initial conditions [1]–[7]. The chaotic random bit generators (RBGs) have a 

hybrid structure with the features of true and pseudo RBGs and are a good alternative to the conventional 

methods. A great number of chaotic systems [8]–[12] are available to serve a source for chaotic RBGs for 

implementation of encryption/decryption algorithms in cryptography. In such applications the discrete maps 

are preferred because of their convenience for digital realizations and superior performances while both 

continuous-time and discrete chaotic systems have been utilized [4], [13]. However, it is pointed out that the 

one-dimensional discrete chaotic maps can suffer from weak security and limited key space in 

cryptosystems [1], [4]. The security scheme of the chaos based RBGs can be improved with the robust 

chaotic maps as recommended in the literature [14]–[18]. The usage of high-dimensional chaotic systems, 

e.g. coupled chaotic maps, is also a very significant way to increase the security of the chaotic RBGs [3], 

[19], [20]. Another way to improve security features is to benefit from some perturbations, e.g. periodic 

perturbations, linear feedback shift registers and small noise injection, when constructing chaotic schemes 

[21]. In this work, weakly coupled and multiplied robust chaotic maps are considered for extending the key 

space and randomness level of the chaotic RBGs. The main feature of these maps is that they exhibit high-

dimensional chaos without any periodic windows for a wide range of parameter variations.  
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Fig. 1:  Random bit generation steps and approaches. 

A random bit generator often consists of three stages as demonstrated in Fig. 1 [2]. The first and main 

stage is the random number source. On the other hand, the binary generator and post-processor stages also 

have important roles for extracting statistically independent and efficient random bits. The random number 

sources can be true or pseudo random sources depending on the application. The true random number 

sources are hardware-based, nondeterministic, aperiodic and taking considerably long time to produce 

numbers. The pseudo-random numbers are software-based, deterministic, periodic, efficient and suitable for 

specifically simulation and modeling. Alternatively, in recent years it has been shown that chaotic systems 

can be a good source for generating random numbers for use in random bit generators. A chaotic RBG 

carries some features of true and pseudo RBGs since chaotic systems yield aperiodic signals, but produced 

from deterministic systems. Thus, the chaotic systems can be a good source for random bit generators and 

related applications of both cryptography and simulation. A wide range of discrete-time and continuous-time 

chaotic systems may be used as random number sources. As a measure of the randomness, the positive 

Lyapunov exponents of the chaotic systems determine the entropy of the signals. However, the positive 

Lyapunov exponent does not provide any indication about unbiased or uncorrelated features of random 

numbers. Hence, for extracting unbiased and uncorrelated random bits from chaotic sources, a post-

processing is needed.  

 

Chaotic Random Bit Generation from Coupled Maps 

In general, most of the chaotic systems might be utilized as random number source, but tent map, Chua’s 

circuit, logistic map and Lorenz’s attractor have been predominantly used in the literature [2], [21]–[23]. 

The chaotic systems as random number sources have a very strong effect on the quality of the generated 

random bits. Even though many chaotic systems can be used for random bit generations, their features affect 

the complexity of the post-processing steps and throughput efficiency. For these reasons, robust chaotic 

maps, with a high mixing feature and without any periodic windows, are very good candidates for chaotic 

random bit generations.   

A robust chaotic map can be described by the following equation 

 

1 ( , )k kz g z    (1) 

where the system parameter α takes real-values and g(.) is a piecewise function, : R Rg  . Positive 

Lyapunov exponents can be used as a measure of the randomness of the chaotic systems. Even so, the 

positive Lyapunov exponent does not measure bias or correlation level of the chaotic throughput. It is very 

important to have statistically unbiased and uncorrelated random numbers for cryptosystems. Hence, the 

coupled chaotic maps are considered in this work. Fig. 3 illustrates the diffusively-coupled chaotic maps 

based random bit generation scheme. Other types of the coupling is also possible, e.g. cross-coupled chaotic 

maps (Fig. 2) or two-chaotic maps. The main aim of the coupling is to extract statistically high-quality 

random bits. For extracting unbiased and uncorrelated random bits from these sources, a comparator is used 

as binary generator and a de-skewing algorithm consisting of the Von Neumann’s technique and the 

exclusive OR (XOR) approach are used in the post-processing.  
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Fig. 2:  Cross-coupled chaotic maps and random bit generation. 

 

 

 

Fig. 3:  Weakly-coupled chaotic maps and random bit generation. 
 

The higher-order chaotic systems can be constructed from the different combination of the same or 

different chaotic systems. For comparison aim, signum map [10], tent map [24] and logistic map  [25] are 

taken into account as sources for chaotic RBGs. First, as illustrated in Fig. 2 consider diffusively-coupled 

signum maps  
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where 0.001   and 1.99  . The sgn(.) function is defined by sgn( ) 1z   if 1z   , sgn( ) 1z    if 1z    

and sgn( ) 0z   if 0z  . Second, as illustrated in Fig. 3 consider a cross-coupled tent maps with 1.99  , 
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Finally, the coupling method can also be based on the usage of two or more (the same or different) chaotic 

maps. While it is better to use robust chaotic maps for this algorithm, for comparison aim, two logistic maps 

can be written as 
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where 3.99  , initial conditions are different, 0 0z w  and 0 0, (0,1)z w  . If the same chaotic maps are used 

in the algorithm, their initial conditions or parameter values must be different. It is also possible to use two 

or more dimensional chaotic maps, e.g. Baker’s map, or their coupled forms in the chaotic RBGs. 

The phase plots of the coupled chaotic maps are shown in Fig. 4. It is seen that the coupled discrete maps 

have a very nice random distribution in the two-dimensional space. 
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The usage of comparator or a threshold is a convenient way to generate binary values from the chaotic 

source signals [26], [27], e.g., 
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 (5) 

 

The threshold, ρ, can be selected arbitrarily within the chaotic range or average values of the chaotic maps 

can be used for this aim. It should be noted that for symmetric chaotic systems (e.g., double scroll), multiple 

thresholds can also be used for each scrolls [23]. 

 

     

Fig. 4: Phase diagrams (zk vs wk) for (a) coupled signum maps and (b) two logistic maps. 

It is desirable to have unbiased and uncorrelated random bits especially in cryptographic applications. 

Since a chaotic source might not provide unbiased and uncorrelated bits as direct output, de-skewing 

techniques [28] are used to eliminate possible biases and correlations in the output of the chaotic binary 

sequences. For this purpose, the Von Neumann technique which is one of the most known de-skewing 

techniques can be used. In this method, to balance the distribution of binary values, the generated binary 

sequences are grouped into pairs of bits and all pairs 00 and 11 are discarded, and each pair 10 is converted 

to 1 while each pair 01 is converted to 0. The Von Neumann’s technique can easily be integrated into the 

hardware and it is not decreasing the bit rate too much, i.e., generating about 1 bit from 4 binary sequences. 

Finally, the XOR logic function is applied between coupled chaotic random outputs to produce the final bit 

sequence.  

The effectiveness of the above chaotic RBG approaches can be analyzed with some statistical tests. The 

commonly used statistical testing methods including monobit, block (frequency test within a block), runs, 

discrete Fourier transformation (spectral), autocorrelation, serial, overlapping template matching, cumulative 

sums and poker tests, are taken into account. The test results for various coupling techniques based random 

bit generators are shown in Table 1. In terms of the random bit throughput, because of the usage of Von 

Neumann de-skewing technique, the coupled chaotic maps provide 1.25x10
6
  random bits out of 5x10

6
 

observations, i.e. 25% efficiency. By taking into account the efficiencies and statistical test results given in 

Table I, it is obvious that the proposed chaotic RBGs provides satisfactory results and can be used in 

cryptosystems.  
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Table 1. Statistical test results for the proposed chaotic random bit generators. 
Test Name Coupled logistic maps Coupled tent maps Coupled signum maps Two signum maps 

Monobit 7e-7  , success 7.8e-7,success 8e-7  , success 8e-7  , success 

Block 0.008, fail 0.195, success 0.226, success 0.382, success 

Runs  0.835, success 0.824, success 0.010, success 0.388, success 

Spectral (DFT) 0.190, success 0.142, success 0.402, success 0.019, success 

Autocorrelation 2.002, success 2.253, success 0.920, success -0.18, success 

Serial  0.003, success 0.000, success 0.000, success 0.000, success 

Overlapping 0.896, success 1.000, success 0.963, success 0.995, success 

Cusum 1.555, success 1.425, success 1.391, success 1.077, success 

Poker 2.624, success 6.851, success 10.44, success 3.911, success 

 

Obviously, the quality of the generated random bits cannot be determined with the statistical tests alone, 

but we can have an idea about it. In practical applications, application specific randomness analysis tests are 

needed for the health of the applications. 

A significant aspect of the chaotic systems is their “high sensitivity to initial conditions” features. This 

feature can be used in cryptosystems as well. For example, the initial condition of a chaotic map can be 

connected with the input devices of the application environment, e.g. mouse movement, port value, thermal 

noise, etc., and the security and unpredictability of the chaotic RBGs can be assured. 

Image Encryption Using the Chaotic Random Bits 

The chaotic RBGs described in the above section are applied to an image encryption and decryption 

scheme.  The steps required to accomplish the encryption process are described in Algorithm 1. The 

algorithm is implemented by using MATLAB. An 8-bit gray scale image with a size of 384x512 pixels are 

selected. The random bits generated from the coupled maps are used in the encryption scheme and the 

results are illustrated in Fig. 5. The original image shown in Fig. 5a is encrypted via the chaotic key 

sequences. After conversion of image pixels and chaotic bits to blocks of 8-bit, the XOR operation is 

employed between the bit sequences for encryption (as described in [29]). The visual assessment of the 

cryptosystem is shown in Fig. 5b. It is obvious that the encrypted and original images are completely 

different and the information about the original image is completely hidden. The decrypted image after 

employing correct key sequence is illustrated in Fig. 5c, which shoes that the original image is correctly 

decrypted. 

 

Algorithm 1: Chaotic RBG based image encryption steps 

1. Convert KxL pixels of an image into one-dimensional array of pixels Mi, i=1,2,..,n, n=KxL 

2. Convert each Mi pixel into m-bit blocks with 2
m
 shades per pixel 

3. Obtain m-bit key vectors from the chaotic random bit sequence 

4. Apply bit-by-bit XOR operation between random bits and image bits 

5. Repeat XOR operation to encrypt all the image pixels 

6. Transform all encrypted digits into KxL pixels to get encrypted image 

 

The performance of the cryptosystem is also evaluated with histogram plots which are one of the most 

common cryptosystem attacks [30]. It is clear that if the encrypted image’s histogram  is uniformly 

distributed, then we can say that the cryptosystem is strong against such attacks. Figure 6 illustrates the 

histogram of the plain image, and its corresponding encrypted image (Fig. 6b). It is obvious that the 

histogram of the encrypted image exhibits a uniform distribution and completely different from the image 

histogram. That is to say, the encrypted image does not reveal any visual information about the original 

image.  
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Fig. 5: Image encryption, (a) original  image with size 291x240 pixels, (b) encrypted image, (c) decrypted 

image. 

 

         

Fig. 6: Histogram plots, (a) histogram of the image, (b) histogram of the encrypted image. 

 

Conclusion 

In this paper, coupled robust chaotic maps based random bit generators are designed for use in 

cryptosystems. The coupled robust chaotic maps are able to provide simple, fast and efficient chaos based 

solutions for practical applications. They do not have any periodic windows in the chaotic regions and 

produce uniformly distributed random numbers. The output of the coupled maps are converted into random 

bits with Von Neumann de-skewing and XORing based post-processing to improve the key space and 

randomness level of the chaotic random bit generators. Statistical tests have been provided to show good 

statistical properties of the approaches. The efficiency and feasibility of the methods have been validated by 

an image encryption application. It is shown that the generated chaotic random bits are highly uncorrelated 

and unbiased, and can easily be implemented for cryptographic applications. 
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