
49

International Journal of Computing Academic Research (IJCAR)

ISSN 2305-9184 Volume 2, Number 2 (April 2013), pp. 49-59

© MEACSE Publications

http://www.meacse.org/ijcar

Requirements Engineering Through Viewpoints

Mohammed Messaoudi

Faculty of Sciences, Imam University, Riyadh, Saudi Arabia

Abstract

The use of Viewpoints in requirements engineering is an emerging area of research. This paper

establishes the context for viewpoint-based requirements engineering and then gives a critical

review of the existing methods. A viewpoint method is seen here as a requirements engineering

process of identifying viewpoints, reasoning within a viewpoint, reasoning between different

viewpoints, and revising a viewpoint. The paper then highlights the common issues related to

viewpoint-based requirements engineering.

Keywords: Requirements Engineering, Elicitation, Validation, Viewpoint Analysis, Viewpoint

Resolution.

 Introduction

In many fields, it has been found necessary to take account of many ways of looking at some

subject matter. Multiplicity appears in various guises in software engineering: view integration in

software development environments [1], the multi-paradigm development [2] and N-version

programming [3]. Multiplicity also appears in other areas such as data base design [4], distributed

artificial intelligence [5], belief systems, and distributed problem-solving. Recently many research

groups have being addressing the idea of multiple viewpoints with respect to requirements

engineering. Mullery [6] declares that:”...The difficulties are often compounded by failure to

recognize that what is needed is not one, but several expressions of requirements. The requirements

expression must recognize several views of the system. Major aims must be: separation of different

viewpoints, consistency and compatibility of the information in the overlap between viewpoints,

and avoidance of unnecessary repetition in producing information common to more than one

viewpoint”.

Viewpoint Analysis Methods

A viewpoint can be informally defined as an angle from which a domain can be observed. An

analyst trying to establish requirements for a high security, intensive care unit monitoring system

may get very different accounts depending on whether he talks to a doctor or to a nurse. By taking

account of both views the analyst gets a better picture of the domain than by considering only one.

There are three types of viewpoints:

 The agent responsible for the viewpoint, i.e. the person observing the problem domain. The

agent could be a user, an analyst, a domain expert, a designer, etc. A viewpoint method is

called agent-oriented if it is based on this type of viewpoint.

International Journal of Computing Academic Research (IJCAR), Volume 2, Number 2, April 2013

50

 The process by which that part of the domain perceived by the agent is modeled. The process

could be a set of correctness-preserving transformations, a set of elaborations (an elaboration

does not have to be correctness-preserving), etc. A viewpoint method is called process-

oriented if it is concerned with the properties of the viewpoint modeling process.

 The representation scheme in which an agent's perception is described. A description of the

perception is called a view. A view could be a data/control flow diagram or a Z schema [7]. A

viewpoint method is classified as scheme-oriented if it operates on the characteristics of the

representation scheme used to describe a view.

This broad categorization corresponds to the three areas of the single viewpoint requirements

engineering: requirements acquisition, specification processes, and specification languages

respectively. Multiple viewpoint approaches differ from the single viewpoint approaches in their

explicit capture of alternative descriptions, whether it is a requirements specification, a system

model, a domain model, or a cognitive model, and their support for resolving conflicts inherent in

the process. The single viewpoint approach has been criticized by several authors [8].

The methods are analyzed along the following lines:

 The identification of a viewpoint.

 The reasoning within individual viewpoints, e.g., to check the internal consistency of a view.

 The reasoning between different viewpoints, e.g., comparison of disparate views, conflict

analysis.

 The revision of a viewpoint, e.g., the modification of a view to restore consistency, fitting in

new information, or the creation of a new viewpoint.

 Process-Oriented Methods. This class includes the works of Feather [9] and Robinson [10].

Feather and Robinson take the view that a software specification process begins with a trivially

simple specification, incrementally elaborates it in a number of parallel "Hues" of design, and

merges the specifications that result from each of those divergent lines to achieve the fully detailed

specification. A viewpoint is a line of design. An elaboration is a transformation that deliberately

changes the meaning of the specification to which it is applied. A conventional transformation

generally keeps the meaning of a specification constant, i.e. a correctness-preserving
transformation.

The approach to merging different views is to "replay" the evolutionary transformations of the

separate lines of design in a serial order. If the parallel evolutions are completely independent then

the result of merging them will be the same regardless of the serial order followed.

There are, however, cases where evolutions interfere with one another in some way. For

example, one evolution renames a function F to G, while another evolution extends function F with

an extra formal parameter. This interference can be resolved by applying the extension before the

renaming. The merging process consists of interference detection and interference resolution.

The process of detecting interferences is based on the properties of the specification and the

changes that affect those properties. The specification properties considered are limited to

terminology (the set of signatures of the specification's constructs, e.g. a data structure) and usage

(the use that constructs make of one another, e.g. a reference to a data structure). The detection of

interferences consists of two stages:

 Determine the effects that each of the evolutionary transformations induces on each

specification property. A possible change to terminology is ‘rename the parameter named p

of construct c to p’ and a possible change to usage might be ‘add to construct c a use of

construct d’.

International Journal of Computing Academic Research (IJCAR), Volume 2, Number 2, April 2013

51

 Make pairwise comparisons of changes within each property, and of changes between each

property.

The following are examples of classes of interferences, between the terminology changes,

considered together with their possible resolutions:

 Duplication: The two transformations make the same terminology change. Only one of the

two transformations needs to be applied.

 Renaming interference: One transformation renames something that the other transformation

refers to. A possible resolution is to apply the renaming transformation second.

 Duplication with renaming: For example, the transformations rename the same construct to

different names. Only one transformation is applied.

 New name clash: The transformations introduce the same name for different purposes. For

example, adding different constructs with the same name. This is resolved by replacing the

new name introduced in one of the transformation with a different name.

 Remove and modify: One transformation removes a construct that the other modifies (e.g.,

adds a new parameter to). The interference is resolved by applying the modification

transformation before the removal transformation.

 Contradiction: The transformations cannot both be performed. For example, the

transformations change the type of the same parameter to different types. There is no

resolution method for contradictions.

The interferences between the usage changes are classified similarly to the interferences between

the terminology changes. For example:

 Duplication: The transformations duplicate the same usage change. Only one of the

transformations needs to be applied.

 Add & Modify ordering dependency. For example, one transformation adds to c1 the use of

d1 and the other removes all c2’s uses of d2 while c l = c2 & d l = d2. This conflict can be

resolved by applying the modification to the added use or by applying the addition only.

The incremental approach allows Feather to maintain a specification by altering elaborations (the

process that we call the revision of a viewpoint) and then "replaying" them to create a new

specification. Each elaboration is recorded i n terms of the changes it induces on the specification

properties.

Robinson also uses the parallel elaboration approach but the starting point for the elaborations is

a goal tree which stores different levels of domain goals. The attributes of a domain goal are

instantiated to different perspectives. For example, in an academic library domain the proposed

value attribute of the goal loan period can be set to ‘2 weeks’ from a library staff's perspective and

to ‘6 months’ from a library user's perspective. Once a perspective is created, the specification

construction process can take place in the same way as Feather's: the perspectives are

operationalized by applying a sequence of elaborations to create specification components for each

line of design. The goal perspectives, the resulting specifications, and the elaborations are recorded

International Journal of Computing Academic Research (IJCAR), Volume 2, Number 2, April 2013

52

together with the links between the goal perspectives and the specification components that support

them.

The integration of the resulting specifications involves the following steps:

1. Correspondence Identification to isolate equivalent specifications. Specifications can only

be compared if there is some similarity between them. The analyst is relied on to carry out

this process.

2. Conflict Detection and Characterization: Syntactic differences between specification

components are mapped to differences of domain goal attribute evaluations from which the

components were derived. This is also carried out by an intelligent agent.

3. Conflict Resolution: When a conflict is detected, the elaboration links are traced up to

identify the domain goals from which the conflicting specifications were derived. So the

resolution process concentrates on removing conflicts between domain goal perspectives.

The conflict resolution method is based on the attributes utility theory. Attribute utility

analysis provides a way for comparing alternatives with varying attribute values in order to

pick the one that offers the maximum overall utility. Robinson uses the domain goal

attributes for developing compromises.

4. Resolution Implementation: Changes made at the goal level, as a result of conflict

resolution, should be mapped back to the specification level. Similarly to Feather's model,

the elaborations are replayed with the new domain goal attributes to produce a new

specification.

5. There is no evidence that the quality of the specification produced using Feather's model

will be better than a specification produced by a single line of design. That is, the model

does not allow for the validation of the specifications. Robinson's model improves on

Feather's by incorporating domain modeling, so a specification component can be

‘justified’ in terms of the domain goals from which it originates.

Scheme-Oriented Methods. A typical example of a scheme-oriented method is the work

reported in [11]. A viewpoint refers to a particular formalism that focuses on a particular aspect of a

system description. For example, Data Flow Diagrams, Entity Relationship models and Petri Nets

are better suited to describe functional, informational, and operational aspects of a system

respectively. A viewpoint captures syntactic and semantic properties of a representation scheme.

The syntactic properties are related to the correct combination of the scheme's primitive elements.

Semantic properties capture the expected behaviors of the specified system.

A knowledge-based system called PRISMA is constructed to support the construction and

integration of different views. Reasoning in PRISMA is based on a set of heuristics that use the

properties of the schemes involved. Given a view, the following checks can be performed in the

PRISMA environment:

 Agenda generation: The agenda mechanism is driven by the structuring heuristics. The

structuring heuristics operate on the syntax properties of the representation used to

characterize unsatisfactory situations in a view and to provide advice on how to overcome

these problems.

 View Validation: The view validation is based on the validation heuristics that operate on the

semantic properties of the representation scheme. The role of the view validation is to check

International Journal of Computing Academic Research (IJCAR), Volume 2, Number 2, April 2013

53

the 'correctness' of view by paraphrasing, i.e. generate natured language descriptions of some

aspects of the specification.

 Complementary Checking: The goal of Complementary checking is to ensure partial

consistency of different views. Complementary checking is driven by the complementary

heuristics which are pre-defined mappings, relating properties of one view to the

corresponding properties of another view. For example, to each process representing a data

transformation (Data-Flow Diagram) there is an associated event representing the occurrence

of that transformation (Petri-net).

By using complementary heuristics the PRISMA approach suppresses conflicts, and does not,

therefore, profit from using multiple viewpoints. In addition the authors avoided the

'correspondence' problem by selecting representation schemes that have correspondence. For

example, it is difficult to integrate object-oriented models with data flow diagrams using PRISMA.

Finkelstein [12] considers the ‘multiple perspective problem’ in the wider context of

"programming-in-the-large", an activity which involves many participants with different skills,

roles, knowledge and expertise. Each participant has differing perspectives on, and about

knowledge of, various aspects of software development and the application area. Further, the

knowledge within each perspective may be represented in different ways and the development may

be carried out concurrently by those involved using different development strategies at different

stages of the development. Finkelstein uses viewpoints to partition the system specification, the

development method and the formal representations used to express the system specification. A

viewpoint is defined as a combination of the idea of an "actor", "knowledge source", "role" or

"agent" in the development process and the idea of a "view" or "perspective" which an actor

maintains. In software terms it is a loosely coupled, locally managed object which encapsulates

partial knowledge about the system and domain, specified in a particular, suitable representation

scheme, and partial knowledge of the process of design. Each viewpoint is composed of the

following slots:

 a representation style, the scheme and notation by which the viewpoint expresses what it can

see;

 a domain, which defines that part of the "world" delineated in the style;

 a specification, the statements expressed in the viewpoint's style describing particular

domains;

 a work plan, describing the process by which the specification can be built;

 a work record, an account of the history and current state of the development.

The work plan is the most important and complex slot in a viewpoint. A work plan is composed of

four 'sub-slots':

 The assembly actions slot which contains the actions available to the developer to build a

specification;

 The check actions slot which contains the action available to the developer to check the

consistency of the specification;

 The viewpoint actions slot which creates new viewpoints as development proceeds;

 The guide action slot which provides the developer with guidance on what to do and when.

There are two types of check actions:

International Journal of Computing Academic Research (IJCAR), Volume 2, Number 2, April 2013

54

 in-viewpoint checks, check the consistency of the specification within the viewpoint;

 inter-viewpoint checks, check the consistency of the specification with those maintained by

other viewpoints. Inter-viewpoint checks are, in turn, of two types: "transfer" and "resolve"

corresponding to cooperation and competition respectively.

Agent-Oriented Methods. This category includes the viewpoint analysis method proposed in

[14], The CORE method [15], the Viewpoint Oriented Approach [16], the dialogue model

introduced in [17], and Easterbrook's ‘multiple perspectives’ model [8].

Finkelstein defines a viewpoint as a participant in the dialogue responsible for maintaining a

particular perspective. A perspective can correspond to the participant's role in the application

domain or to an area of concern to that participant. As an agent can hold several responsibilities he

can hold several viewpoints. Requirements engineering through dialogue takes the form of a game,

in which moves consist of speech acts, such as assertion, question, challenge, or withdrawal, and a

set of rules to maintain a 'legal' dialogue. Viewpoints are committed to anything they state and to

anything stated by other viewpoints. They are responsible for the maintenance of the validity and

the internal consistency of their views and through the rules defined in the dialogue model, of the

other views by consulting the chains of reasoning made by other viewpoints, and by requesting

information which they need to verify the conclusions.

Easterbrook's work is based on the dialogue model. Easterbrook interprets the dialogue (between

an analyst and an information source) transcripts into some formal language (first order predicate

calculus). The first task is to break the textual information into chunks, where each chunk focuses

on a particular area of knowledge (or a topic) called a perspective. Each chunk is identified by its

source, where a source could be a person or a group of people, and then interpreted into a set of

propositions which act as a formal representation of the information contained in that chunk. The

formal representation of a perspective is called a viewpoint. If a viewpoint becomes inconsistent it

is split into consistent sub-viewpoints creating new topics, i.e., conflicting statements are placed in

separate descendants of the current viewpoint. The explorative nature of viewpoint decomposition

is similar to the issue-based approach (e.g., [13]). In this way, the viewpoints descriptions are built

up through the addition (assertion) or removal (retraction) of statements (called commitments). The

commitment reasoning scheme allows a statement to be in one of four states: Uncommitted state is

the default, indicating that the item has not been discussed yet. The true and false states indicate that

a person has committed himself to one or the other. The inconsistent state is used when a person has

contradicted himself. Conflicts detection is based on the detection of logical inconsistencies in the

first order predicate calculus scheme, although the model allows other representations to be used

given that inference rules are provided.

Part of Easterbrook's model is the computer-supported negotiation model supported by a tool

that provides clerical support and some guidance for the participants, allowing them to compare

their descriptions and negotiate options for resolution. Given two descriptions, within which

particular statements are known to conflict, the participants should:

 Establish correspondences between the two descriptions by comparing the statements around

the conflicting ones in order to establish a context for the conflict. The result is a list of

correspondences between items in the viewpoints and a list of specific disparities between

items.

 Identify the conflict issues (the points to be addressed). An example of an issue is the loan

period of books and the fines policy issue.

 Agree resolution criteria by which to judge the possible resolutions with reference to the

International Journal of Computing Academic Research (IJCAR), Volume 2, Number 2, April 2013

55

participants' satisfaction.

 Generate resolution options. The model is restricted to three types of conflicts: conflicts in

terminology, e.g. the same terms used for different concepts, conflicting interpretations, and

conflicting designs assuming that requirements contain some design information. The

conflicts are given values reflecting their degree of severity: non-interference, partially-

interfering, and mutually exclusive.

 Select a resolution from the options available.

CORE [6,15,18] was developed for requirements engineering with interactive elicitation from

multiple requirements sources as its primary aim. Viewpoints are seen as agents that have interests

to be supported/influenced by the proposed system and act as points where information elicitation

takes place ("possessors of requirements"). By virtue of its support for both projection and

decomposition CORE identifies two types of viewpoints: bounding viewpoints and defining

viewpoints. Bounding viewpoints are the external agents that interact with the target system (called

environmental agents) whereas defining viewpoints are the functional processes that make up the

target system. For a patient-monitoring system, for instance, a hospital staff member such as a ward

nurse, medical staff member such as a doctor, the central station, the bed and patient may be

identified as bounding viewpoints and defining viewpoints are analysis and monitoring. CORE

assists in meeting the following objectives:

 obtaining information from viewpoints (who have only as yet only half-formed ideas about

the service required from the proposed system);

 detecting and illustrating differences in perception of the required service;

 getting decisions about whose view is to prevail or aiding the development of compromises;

 achieving completeness and consistency of the specified information, where possible, and a

record of each instance where it is not achieved;

 recording it in a form understandable to the viewpoints and usable for developing a formal

specification of the system requirements, suitable as a contract to develop the proposed

system.

CORE comprises the following steps:

1. Viewpoint identification and structuring – classification of viewpoints.

2. Information gathering - interviewing each viewpoint to identify the actions performed by

that viewpoint, the actions the proposed system is required to perform for the viewpoint,

and their production and consumption of data flow from other viewpoints.

3. Data structuring - construct a diagram resembling a Jackson structure diagram [19] which

shows the legal sequencing of the output data flows recorded during information gathering.

4. Actions structuring (isolated) - using the actions and their interfaces from information

gathering and the order of derivation of the outputs from Data Structuring, actions

International Journal of Computing Academic Research (IJCAR), Volume 2, Number 2, April 2013

56

structuring (isolated) consists of establishing dependencies among the actions and

producing a Single- Viewpoint Model similar to a data flow diagram, for each viewpoint.

5. Actions structuring (combined) - constructs Combined-Viewpoint Models. A combined

viewpoint model (or a transaction) is typically a small set of interconnected actions, from

different viewpoints, which interact closely to perform some specific sub-tasks of the

system in its environment.

6. Constraints analysis - once the individual viewpoints have been completely reconciled

transactions are 'animated' through 'what-if enquiries to discover anything that may cause a

problem leading to a break-down or failure to provide the required service within the

defined constraints. For example, the analyst might ask: If iteration is involved, could there

be convergence problems or error build-up?

These activities are driven by a set of heuristics that are hints about checks that should be

performed at each step. These heuristics can be seen as a special case of the heuristics built into

PRISMA when using a data flow-based representation only and employing animation [18] instead

of paraphrasing for specification validation.

In viewpoint analysis, proposed in [14], multiple analysts (viewpoints) describe their

understanding of a problem in the same universe of discourse in the same language VWPL

(VieWPoint Language) using a common vocabulary. Each analyst constructs his/her view using

three perspectives corresponding to the modeling aspects: data modeling, process modeling, and

actor modeling.

Actor modeling is related to the agents responsible for the processes. To attach some semantics

to the information encoded in the viewpoint language, viewpoints use two hierarchies: the "is-a"

hierarchy to represent specialization relationships between keywords; and the "parts-of hierarchy to

represent decomposition relationships. Leite contends that the heavy use of redundancy will

improve the chances of detecting problems related to consistency and completeness. Each

viewpoint then integrates the perspectives into a view, resolving the internal conflicts. Once the

views are completed they are compared, producing a list of 'discrepancies' that acts as part of an

'agenda' for negotiating resolutions to conflicts between viewpoints.

Kotonya and Sommerville [21] proposed a Viewpoint-based Object-oriented Approach to

requirements analysis (VOA) in which a viewpoint is seen as an external entity that interacts with

the system being analyzed, but one that can exist without the presence of the system. VOA is two

layered: the viewpoint layer, concerned with the behavior of the environment of the proposed

system, and the system layer, concerned with the system's responses to its environment. VOA

includes four main stages:

 viewpoint identification;

 viewpoint structuring and decomposition;

 information collection;

 reconciliation of information across viewpoints;

There are close similarities between VOA and CORE. They share:

 Classification of the external entities: direct and indirect viewpoints (CORE), and active and

passive viewpoints (VOA).

 Establishment of a viewpoint structure but use different structuring schemes. CORE employs

functional decomposition (role/sub-role) whereas VOA provides for inheritance

International Journal of Computing Academic Research (IJCAR), Volume 2, Number 2, April 2013

57

(abstraction/specialization)

 Explicit capture of the interactions between entities in the environment and the target system,

in terms of the services the system is required to provide and the constraints under which the

services should be provided.

The two approaches differ in the following:

 CORE’s viewpoint structure is a mixture of external and internal viewpoints with the top

level defined as ‘system + environment’ while VOA treats them separately;

 CORE captures the interactions between the external viewpoints for a fuller model of the

environment;

 VOA distributes the non-functional constraints across the viewpoint structure and reconciles

them across the viewpoints while CORE treats them in a separate activity (constraints

analysis) after the full viewpoints have been integrated;

 CORE provides heuristics for detecting structural inconsistencies. VOA does not provide a

firm mechanism for ‘information reconciliation across viewpoints’.

Discussion

A viewpoint method has been identified as agent-oriented, scheme-oriented, or process-oriented

depending on the type of viewpoint it adopts (agent, process, or formalism). The following issues

are addressed by viewpoint methods:

Viewpoint identification. There is a high number of angles from which a domain can be

observed. A viewpoint method should have clear criteria for distinguishing viewpoints, i.e., an

unambiguous definition of a viewpoint. Some methods fix a set of pre-defined viewpoints (e.g.,

[14], [6]) while others start with a set of viewpoints then identify others during the analysis process

through decomposition, refinements, etc. (e.g., Easterbrook).

View Modeling. Once a relevant viewpoint has been identified it can be applied to the domain

under analysis to produce a description of the domain from that viewpoint, i.e., a view. A method

can either model views independently (competitive) or derive one from another (cooperative).

Comparing Disparate Views. Some methods compare the views in parallel with the view

modeling process, others compare them only when they are ‘final’ (most of the methods). The result

is a list of ‘discrepancies’. Comparison makes sense only when the viewpoints correspond (have

something in common). Establishing correspondence is a tough problem. Leite, for example,

imposes several restrictions: viewpoints should consider the same topic, use a common vocabulary,

and use the same language to constrain how the facts should be expressed. Easterbrook assumes

that viewpoints will not be wholly unfamiliar with other viewpoints' knowledge, so that they will be

able to suggest correspondences between their views.

Conflicts Characterization. The discrepancies resulting from the comparison are, often,

syntactical differences, structural differences, or differences of terminology (viewpoints use

different terminology to describe the same thing); Conflicts characterization establishes an agenda

to be used as input to the negotiation. Part of the negotiation process is to distinguish between real

and apparent conflicts by exploring the context of the differences and gathering more information

necessary to identify misunderstandings, differences in terminology, etc. [8].

International Journal of Computing Academic Research (IJCAR), Volume 2, Number 2, April 2013

58

Conflicts resolution. Once the different options about an issue have been identified a conflict

resolution process is launched. Easterbrook and Robinson have attempted to address the conflict

resolution problem. They both employ an iterative strategy of generation followed by evaluation.

Sycara [20] uses this approach in her model of an automated labor mediator. Options for a

resolution are suggested then evaluated against the satisfaction of the participants. The process is

repeated until reconciliation is achieved.

In a study of conflict behavior in the requirements engineering phase of large systems

development [16], it has been shown that conflicts or interpersonal disagreements increase the

quality of group decision making by stimulating critical thinking, increasing group involvement,

and widening the search for alternatives. The conflicts resolution process has been characterized by

[20,22]:

1. The iterative nature: Negotiators often employ an iterative strategy of generation followed

by evaluation.

2. The participative nature: all the viewpoints should be involved in the reconciliation

process.

3. The learning process involved. A participative framework intends to encourage a pooling

of knowledge and insight, and the decision-makers become engaged in a process of

learning and understanding.

4. The amount of information to be handled in order to make a reasonable decision

References

[1] Meyers, S. : Difficulties in Integrating Multiview Development Systems, IEEE Software, Vol.

8, No. 1, 1991, pp. 49-57.

[2] Zave, P. : A Compositional Approach to Multi-Paradigm Programming, IEEE Software, Vol. 6,

No. 5, 1989, pp. 15-25.

[3] Chen, L. and Avizienis, A. : N-version Programming: a Fault-tolerance Approach to Reliability

of Software Operation, in 8th Ann. Int. Conf. on Fault Tolerance Computing, Toulouse, France,

1978, pp. 3-9.

[4] Batini, C, Cenzerini, M., and Navathe, S.B. : A Comparative Analysis of Methodologies for

Database Scheme Integration, ACM Computing Surveys, Vol. 18, No 4, 1986.

[5] Smith and Davis : Frameworks for Cooperation in Distributed Problem Solving, IEEE Trans.

Systems, Man & Cybernetics, Vol. 11, No. 1, 1981, pp. 61-69.

[6] Mullery, G. : CORE - A method for Controlled Requirements Expression, Proc. of Fourth IEEE

Int. Conf. on Soft. Eng., Munich, Germany, 1979.

[7] Ainsworth, M., Cruikshank, A.H., WaUis, P.J.L., and Groves, L.J. : Viewpoint Specifications in

Z, Information and Software Technology, Vol. 36, No. 1, pp. 43-51, 1994.

[8] Easterbrook, S. : Elicitation of Requirements from Multiple Perspectives, Ph.D. thesis.

Department of Computing, Imperial College of Science, Technology, & Medicine, University of

London, 1991.

[9] Feather, M.S. : Detecting Interference when Merging Specification Evolution, ACM Sigsoft,

Software Engineering Notes, Vol 14, No 3, 1989, pp. 169-176.

[10] Robinson, W.N. : Integrating Multiple Specifications using Domain Goals, ACM SIGSOFT

Engineering Notes, Volume 14, Number 3, 1989, pp. 219-226.

[11] Niskier, C , Maibaum, T., and Schawbe, D. : A Look Through PRISMA: Towards Pluralistic

Knowledge-based Environments for Software Specification Acquisition, ACM Sigsoft,

Software Engineering Notes, Vol. 14, No 3, 1989, pp. 128-136.

International Journal of Computing Academic Research (IJCAR), Volume 2, Number 2, April 2013

59

[12] Finkelstein, A., Kramer, J., and Goedicke, M . : Viewpoint Oriented Software Development,

3rd International Workshop on Software Engineering and its Applications, Toulouse, France,

(IEEE Computer Society), 1990, pp. 337-351.

[13] Wing, L. : A n issue-Based Framework for Requirements Elicitation, Description and

Validation, Technical report No. 92/02, Department of Computing, King's college London

(University of London), 1992.

[14] Leite, J. and Freeman, P. : Requirements Validation Through Viewpoint Resolution, IEEE

transactions on Software Engineering Vol. 17, No. 12, 1991..

[15] Mullery, P. : Acquisition-Environment, in Distributed systems: Methods and tools for

specification, Spriner-Verlag, 1985.

[16] Kotonya, G. and Sommerville, I . : Viewpoints for Requirements Definition, Software

Engineering Journal, 1992, pp. 375-387.

[17] Finkelstein, A. and Fuks, H. : Multi-party Specification, ACM SIGSOFT Engineering Notes,

Volume 14, Number 3, 1989, pp. 185-195.

[18] Kramer, J., Chinnick, S., and Finkelstein, A. : TARA: Tool Assisted Requirements Analysis,

Final Report September 1987, Research Report 87/18, Imperial College, London and Systems

Designers pic, Camberley, Surrey, U.K.

[19] Jackson, M.A. : Jackson System Development, Academic Press, 1975.

[20] Sycara, K. : Resolving Adversarial Conflicts: an Approach Integrating Ceisaebased and

Analytic Methods. Ph.D. thesis, Georgia Institute of Technology, 1987.

[21] Elam, J.J., Diane B. Walz, D.B., Krasner, H., and Curtis, B. : A Methodology for Studying

Software Design Teams: An Investigation of Conflict Behaviors in the Requirements definition

Phase, 2nd Workshop on Empirical Studies on Programmers, 1987, pp. 83-99.

[22] Efstathiou, J.H.: A Practical Development of Multi-attribute Decision Making using Fuzzy Set

Theory, Ph.D. thesis. Department of Computing, University of Durham, 1979.

