
167

International Journal of Computing Academic Research (IJCAR)
ISSN 2305-9184 Volume 2, Number 5(October 2013), pp. 167-181
© MEACSE Publications
http://www.meacse.org/ijcar

A Framework for Model-Based Code Generation from a Flowchart

Basma Moukhtar Hussein1 and Akram Salah2

1&2 Computer Science Dept. , Faculty of Computers and Information, Cairo University, Giza, Egypt

Abstract

Productivity is a key concept in today's software industry, that's why a lot of researches became

interested in automatic Code Generation. But these researches focused only on the application

structure and high-level design details. In this research, a framework for automatic code generation

from a flowchart is introduced, based on metamodels for the flowchart and for the programming

language of the generated code.

Keywords: Model, Platform Independent Model (PIM), Platform Specific Model (PSM),

MetaModels, Meta Object Facility (MOF), Model Driven Architecture (MDA), Atlas

Transformation Language (ATL).

Introduction

Model-based Code generation is a time-saving technique that helps software engineers to be

more productive by reducing redundant hand-coding. In this world of increasingly code-intensive

frameworks, the value of replacing laborious hand-coding with code generation is acute and, thus,

its popularity is increasing.

This idea of the automatic code generation emerged from the concept of Model Driven

Architecture (MDA). The MDA is a new way of writing specifications, based on a platform-

independent model. A complete MDA specification consists of a definitive platform-independent

based UML model, plus one or more platform-specific models and interface definition sets, each

describing how the base model is implemented on a different middleware platform. The MDA

focuses primarily on the functionality and behavior of a distributed application or system, not the

technology in which it will be implemented. This raises the level of abstraction at which designers

and developers interact with the software systems they are building [1].

There are some existing code generation tools that rely on the concept of MDA to do code

generation such as Acceleo [2], Andromda [3] and others. But all these tools focus only on the

generation of the high level components of the application such as packages and classes skeletons,

Data Access Layer and presentation layer based on the application design. But very few tools focus

on the code in the business layer which represents the business logic of the application, such as [4,

5] that generates a code from a structured flowchart.

This research develops a framework for code generation from a flowchart which represents

the business logic of a specific function in the application. Metamodels for both the flowchart and

for the programming language of the generated code (java) are introduced. And then the developed

International Journal of Computing Academic Research (IJCAR), Volume 2, Number 5, October 2013

168

framework is verified and tested and finally it's is applied to transform the flowchart metamodel to

the java code.

Background

Models

A model of a system is a description or specification of that system and its environment on

abstract form for some certain purpose. A model is often presented as a combination of drawings

and text. The text may be in a modeling language or in a natural language [6]. A model can be one

of two types with respect to the level of abstraction:

a) A Platform Independent Model (PIM)

The PIM provides formal specifications of the structure and function of the system that

abstracts away technical details [6].

b) A Platform Specific Model (PSM)

PSM is expressed in terms of the specification model of the target specific platform. PSM

have to use the platform concepts of exception mechanisms, parameter types (including platform-

specific rules about objects references, value types, semantics of call by value, etc.), and component

model [6].

Metamodels

Metamodel is a collection of "concepts" (things, terms, etc.) within a certain domain. A

model is an abstraction of phenomena in the real world; a metamodel is yet another abstraction,

highlighting properties of the model itself. A model conforms to its metamodel in the way that a

computer program conforms to the grammar of the programming language in which it is written; a

model that respects the semantics defined by a metamodel is said to conform to this metamodel.

Fig. 1 : Models conforms to MetaModels

http://en.wikipedia.org/wiki/Model_%28abstract%29
http://en.wikipedia.org/wiki/Real_life_%28reality%29

International Journal of Computing Academic Research (IJCAR), Volume 2, Number 5, October 2013

169

Meta Object Facility (MOF)

The Meta-Object Facility (MOF) technology provides a model repository that can be used to

specify and manipulate models, thus encouraging consistency in manipulating models in all phases

of the use of MDA [6]. MOF defines an abstract language and a framework for specifying,

constructing, and managing technology neutral metamodels (e.g. UML, MOF itself).

Model Driven Architecture

The MDA is "an approach to IT system specification that separates the specification of

system functionality from the specification of the implementation of that functionality on a specific

technology platform."[6]

The MDA approach allows the same model to be realized in multiple different platforms

through auxiliary mapping " transforming the elements of a model conforming to a particular

metamodel into elements of another model that conforms to another (possibly the same)

metamodel" [6].

Model to Model Transformation

Model transformation is the process of converting one model conforming to a metamodel to

another model conforming to another (or same) metamodel using a transformation model. This can

be illustrated in Fig. 2.

 Fig. 2: Model to Model Transformation [6]

Atlas Transformation Language (ATL)

To make the transformation from flowchart to code, we used the Atlas transformation

Language (ATL). ATL is a model transformation language specified as both a metamodel and a

textual concrete syntax. In the field of Model-Driven Engineering (MDE), ATL provides

developers with a means to specify the way to produce a number of target models from a set of

source models.

International Journal of Computing Academic Research (IJCAR), Volume 2, Number 5, October 2013

170

An ATL transformation program is composed of rules that define how source model

elements are matched and navigated to create and initialize the elements of the target models.

Besides basic model transformations, ATL defines an additional model querying facility that

enables to specify requests onto models. ATL also allows code factorization through the definition

of ATL libraries.

ATL is applied in a transformational pattern shown in Fig. 3. In this pattern a source model

"Ma" is transformed into a target model "Mb". The transformation is driven by a transformation

definition (or a transformation program) mma2mmb.atl written in the ATL language. The

transformation definition is a model. The source and target models and the transformation definition

conform to their metamodels "MMa"," MMb", and "ATL" respectively. The metamodels conform

to the "MOF" metametamodel [7].

 Fig. 3 : ATL Transformation Pattern [7]

The Proposed Framework

The proposed MetaModels

As this research uses the ATL in the code generation, and ATL uses metamodels in the

model-to-model transformation, metamodels are needed for both the input and output models

(flowchart and java code).

As there is no standard metamodel for the flowchart, we introduced a metamodel to be used

in the transformation (this will be covered in the following subsection). As for java, there is a

standard metamodel developed by the OMG. But this metamodel is found to be too complicated for

this research, so a simplified metamodel for java is introduced in a following subsection.

a) The Proposed Flowchart Metamodel

The proposed flowchart consists of two main components Nodes and Transitions. The nodes

can be of different node types (start, stop, input, output, declare, calculation, decision and

convergence). The convergence node type is not transformed to any code, it's only used in the

flowchart representation for if statements and loops. Also, each node has a set of incoming

transitions and outgoing transitions.

International Journal of Computing Academic Research (IJCAR), Volume 2, Number 5, October 2013

171

Fig. 4: Flowchart Metamodel

b) The Proposed Java Metamodel

The proposed java metamodel represents the main component of the basic java code, which

is the java statement. The java statement can be of type If, For, Assignment, PrintOutput, Input or

VariableDeclaration.

Fig. 5: Simplified Java Metamodel

International Journal of Computing Academic Research (IJCAR), Volume 2, Number 5, October 2013

172

Flowchart to Java Code Transformation

In the proposed approach, a flowchart is transformed to java code using ATL transformation

rules. The flowchart and the code are considered as models. Each of them conforms to a

metamodel. We need to transform a sample flowchart model that conforms to the flowchart

metamodel to its corresponding code model that conforms to the code metamodel (both metamodels

are introduced in the previous section).

This is done with the following sequence:

1. The flowchart as a graph (drawing) is transformed to xml model that conforms to the

proposed flowchart metamodel.

2. The xml model is then transformed to the java model in xml.

3. The xml java model is transformed to java code.

It is assumed in this research that the transformation of the flowchart from a drawing to xml

model (conforming to the proposed metamodel) is done. So, the transformation is done on two

stages. First we transform the flowchart metamodel to the java metamodel. Second, we transform

the java metamodel to java code. This can be represented in Fig. 6:

Fig. 6: Overview of the proposed framework

In Details:

First Stage: Flowchart metamodel to Java metamodel

In this stage, the flowchart metamodel is transformed to the java metamodel, by applying

the ATL rules specified in the "flowchartMM2javaMM.atl" file.

Fig. 7: Transformation of Flowchart metamodel to Java metamodel

MOF

Flowchart Meta

Model

ATL Java Meta

Model

Flowchart

Model

Java Model

flowchartMM2javaMM.

atl

ATL Rules

International Journal of Computing Academic Research (IJCAR), Volume 2, Number 5, October 2013

173

Second Stage: Java metamodel to Java code

In this stage, the java metamodel is transformed to the java code, by applying the ATL

query specified in the " JavaMM2JavaCode.atl" file.

More Implementation Details

First Stage: Flowchart metamodel to Java metamodel

Each node type in the flowchart metamodel is transformed to its corresponding java

statement, using the atl rules written in the atl transformation file, as follows:

For example, if we need to transform a flowchart calculation node to a java

AssignmentStatement, the following ATL rule is used:

MOF

Java Meta Model ATL Text Meta

Model

Java Model Java Code

JavaMM2JavaCode.atl

ATL Query

Fig. 8: Transformation of Java metamodel to java code

International Journal of Computing Academic Research (IJCAR), Volume 2, Number 5, October 2013

174

rule CalculationNode2AssignmentStatement
{
 from
 rule CalculationNode2AssignmentStatement
{
 from
 node : Flowchart!Node (
 node.type=#calculation
)
 to
 stmt : Java!AssignmentStatement(
 LHS<-node.title.substring(1,node.title.indexOf('=')) ,
 RHS<-node.title.substring(node.title.indexOf('=')+2,node.title.size())

)
}

This ATL rule match the attributes of each calculation node in the source model to their

corresponding attributes of the Java AssignmentStatement in the target model. For example, if we

have a calculation node with title "x=5", this rule will consider "x" as the left-hand side (LHS) of

the assignment statement (all the characters before the "=" operator) and "5" as the right-hand side

(RHS) of the assignment statement (all the characters after the "=" operator).

Second Stage: Java metamodel to Java code

In this stage, each generated java statement "that conforms to the proposed java metamodel"

is transformed to a run-able java code, using the atl query in the atl file "

JavaMM2JavaCode.atl". The query is as follows:

query Java2Code_query = self.convert(Java!JavaStatement.allInstances())
 .writeTo('/FlowChart2Java_24.0_testing/out-
codes/tc8_out_testLoopNestingIF.java');

uses MM2Code_Helpers;

The "convert" helper is as follows:

helper def:convert(s: Sequence(Java!JavaStatement)) : String =
 thisModule.removeSubStatements(s)->
 iterate(st; res : String = ''| res + st.toString() + '\n');

This query takes all the instances of the java statements and converts each to its corresponding

java run-able code, using the atl helpers in the atl file

 "MM2Code_Helpers.atl".

For example, to convert a java "AssignmentStatement" with "LHS" and "RHS" attributes to a

Java Assignment run-able Statement, the following helper is called:

helper context Java!AssignmentStatement def: toString() : String =
 self.LHS + ' = ' + self.RHS + ';';

International Journal of Computing Academic Research (IJCAR), Volume 2, Number 5, October 2013

175

This will convert a Java "AssignmentStatement" with LHS="x" and RHS=5 to a run-able java

statement written as follows:

X=5;

Related Work

Many researches exist that deal with the model-based code generation in general [8, 9, 10],

but very few researches make code generation from a flowchart [4, 5].

"Making model-based code generation work" [8], focuses on what is a "true" model-based

code generator and how metamodels can guide the code generator.

"Template and model-based code generation for MDA Tools" [9], introduces a code

generator that uses intermediate data and makes use of code templates for the final transformation

into pieces of text. But this generator generates the general structure of the system (classes and

methods with empty body).

"Automatic Code Generation from Design Patterns" [10], a tool based on design pattern can

automatically generate a design pattern of abstract level.

The papers in [4] and [5] are more related to this research, as they generate code from a

flowchart.

For "Visual Programming using Flowchart" [4], the main concept is to utilize the

advantages of flowchart. The programmer just describes his idea and algorithm easily by drawing

the flowcharts, and then the application compiles and links all flowcharts to create EXE file.

"Research and Application of Code Automatic Generation Algorithm Based on Structured

Flowchart" [5], generates c-code from a structured flowchart using recursive method described in

their paper.

Neither [4] nor [5] use specific metamodels for the input and output of the code generation

process. Also, they don't mention a clear framework for their work. Another difference is that both

researches use a graphical tool to draw the flowchart, while the proposed framework deals with the

flowchart as a model represented in xml even if there's no drawing for the input flowchart. If a

drawing exists, it will need to be transformed so that it conforms to the proposed flowchart

metamodel.

Verification of the Framework

In [5], a recursive algorithm for the transformation is used, so the exhaustive method is used

in the verification. This can't be applied for the proposed framework as transformation rules are

used for model-to-model transformation. But they rely on that the flowchart consists of some basic

structures such as if and loop:

International Journal of Computing Academic Research (IJCAR), Volume 2, Number 5, October 2013

176

(a) Selection Structure (IF)

(b) Loop structure (while/for)

Fig. 9: Flowchart basic structures

Any flowchart is a combination of these two basic structures, they can be in a sequence

(selection followed by a loop or vice versa), or can be nested as illustrated in the Fig. 10:

(a) IF nesting IF

(b) IF nesting Loop

International Journal of Computing Academic Research (IJCAR), Volume 2, Number 5, October 2013

177

(c) Loop nesting Loop (d) Loop nesting IF

Fig. 10: Flowchart nesting structures

As long as any flowchart can only be in a form of the above forms, these structures are used

in the proposed approach to verify that any flowchart can be transformed to code using the

proposed framework.

The framework test cases are designed so that they test all the above structures as shown in

Table 1:

Table 1 : The Proposed Framework Test Cases

Description of the input flowchart Expected Output Result

1 Flowchart with any sequence of

simple statements (No Selection or

Loops)

Run-able java code

with the same

structure

Succeeded

2 Flowchart with selection only Run-able java code

with the same

structure

Succeeded

3 Flowchart with loop only Run-able java code

with the same

structure

Succeeded

4 Flowchart with selection followed by

loop or vice versa (as a sequence not

nesting)

Run-able java code

with the same

structure

Succeeded

5 Flowchart with selection nesting

selection

Run-able java code

with the same

structure

Succeeded

6 Flowchart with selection nesting loop Run-able java code

with the same

structure

Succeeded

International Journal of Computing Academic Research (IJCAR), Volume 2, Number 5, October 2013

178

7 Flowchart with loop nesting loop Run-able java code

with the same

structure

Succeeded

8 Flowchart with loop nesting selection Run-able java code

with the same

structure

Succeeded

A simple flowchart to a simple java code

This is an example that shows how a flowchart is transformed to its corresponding java

code. The example contains a loop statement nesting if statement (test case 8).

The flowchart as a graph

Fig. 11: Flowchart Example

International Journal of Computing Academic Research (IJCAR), Volume 2, Number 5, October 2013

179

The flowchart represented as xml (input file)

Fig. 12: Flowchart as xml

The java code represented as xml (output file)

International Journal of Computing Academic Research (IJCAR), Volume 2, Number 5, October 2013

180

Fig. 13: Java Code as xml

The run-able Java code (final output file)

Fig. 14: The final output (Java code)

Conclusion and Future Work

A new framework for code generation from a flowchart is produced and verified for

correctness. This is supposed to speed up the development process especially for novice

programmers. But this framework needs to be tested on more complex cases. Also, it needs to be

integrated with a graphical tool that generates a flowchart that conforms to the proposed

metamodel. Finally, if this framework is integrated with any of the ready existing tools that generate

the general structure of the system, a nearly complete application can be generated using the code

generation tool.

References

[1] Jon Siegel and the OMG Staff, "Developing in OMG’s Model-Driven Architecture",

Strategy Group, Object Management Group White Paper, November, 2001, Revision 2.6

[2] Acceleo Home Page: http://www.acceleo.org/pages/home/en

[3] Peter Wittmann, "MDA using AndroMDA", http://www.wittmannclan.com

http://www.acceleo.org/pages/home/en

International Journal of Computing Academic Research (IJCAR), Volume 2, Number 5, October 2013

181

[4] Kanis Charntaweekhun and Somkiat Wangsiripitak, "Visual Programming using

Flowchart", Computer Engineering Department, Faculty of Engineering King Mongkut's

Institute of Technology Ladkrabang, Bangkok, Thailand.

[5] Xiang-Hu Wu, Ming-Cheng Qu, Zhi-Qiang Liu, Jian-Zhong Li, "Research and Application

of Code Automatic Generation Algorithm Based on Structured Flowchart", International

Journal of Reviews in Computing, July, 2011.

[6] Joaquin Miller and Jishnu Mukerji, "MDA Guide Version 1.0.1", Copyright © 2003 OMG.

[7] Frédéric Jouault and Ivan Kurtev, "Transforming Models with ATL", ATLAS Group

(INRIA & LINA, University of Nantes).

[8] Dr. Juha-Pekka Tolvanen, the CEO of MetaCase, "Making model-based code generation

work".

[9] Leif Geiger, Christian Schneider and Carsten Reckord, "Template and model-based code

generation for MDA Tools".

[10] Frank Budinsky, Marilyn Finnie, Patsy Yu, Toronto Software Laboratory, John Vlissides,

"Automatic Code Generation from Design Patterns", T.J. Watson Research Center.

