
182

International Journal of Computing Academic Research (IJCAR)
ISSN 2305-9184 Volume 2, Number 5(October 2013), pp. 182-191
© MEACSE Publications
http://www.meacse.org/ijcar

A Cognitive model to enhance learning outcomes in Computing

Virendra Gawande1, Sarika Gawande2 and Yassir Abdulghani Al-Bazzaz3
1&2Information Technology Department, College of Applied Sciences, Ministry of Higher Education,

Sultanate of Oman
3Computer Science Department, Alhadba University College, Mosul, Iraq

 Abstract

 Cognitive Load Theory (CLT) provides a basis for the development of teaching and learning

materials which are more effective than conventional approaches. CLT suggests that learning

happens best under conditions that are aligned with human cognitive architecture. The structure of

human cognitive architecture, while not known precisely, is discernible through the results of

experimental research. Recognizing George Miller's information processing research showing that

short term memory is limited in the number of elements it can contain simultaneously, Sweller

builds a theory that treats schemas, or combinations of elements, as the cognitive structures that

make up an individual's knowledge base. The paper the highlights the application of CLT, and its

potential uses in understanding and improving novice programming skills and enhancing computer

science education.

Keywords: Cognition, CLT, Schemas, Working memory, Instructional design.

Introduction

Teaching first year Computer Science students and making them understand, and use the

fundamental techniques of software engineering is well known difficulty in Computer Science

education. The common strategies currently involve a combination of, a) Lectures; b) Tutorials;

and c) Lab sessions.

These approaches go some way to providing an effective learning environment for introductory

software engineering, but they do not cope well with problems such as the diversity of students that

joins in the first year courses in Computer Science.

One imperative need over this range of students is to teach good programming habits and effective

software engineering strategies from the beginning. Another important need for the students is to be

able to work at their own pace on the material at a level which is suitable according to their

background knowledge.

Invariably, because of the range of backgrounds, opportunity for such personalized learning is

limited in the standard teaching venues (lectures and tutorials). This paper reviews some of the

possible solutions to deal with such problems, and finally suggests a teaching model that aims to

facilitate learning and overcome most of the problems highlighted above. This teaching model is

based on an educational theory, the Cognitive Load Theory (CLT).

Cognitive Science

http://www.instructionaldesign.org/theories/information-processing.html

International Journal of Computing Academic Research (IJCAR), Volume 2, Number 5, October 2013

183

Cognitive science deals with the mental processes behind learning, memory, and problem-solving.

It identifies an information-processing approach to explain how the mind works. In the simplest

form of this model, the mind is assumed to be divided into three portions, a) sensory, b) working,

and c) long term memory [4]. An adaptation of the model is shown in Figure 1.

Figure 1 A Simple Model of Memory

Memory

Sensory memory receives stimuli from the senses, including sight, sounds, smell, taste, and touch. It

is short- lived, and if the mind is not able to identify and assign meaning to the input, the

information is lost. For example, the sense of smell can detect a particularly inviting and

unidentifiable fragrance, and a few moments later the fragrance is gone and is no longer able to be

recalled in detail.

Long-term memory holds a permanent and massive body of knowledge and skills. Examples include

how to ride a bicycle, multiplication facts, how to walk, and where we live.

Working memory is the portion of our mind that allows us to think both creatively and logically, and

to solve problems. It provides our consciousness[1]. Working memory is the interface between long

term memory and sensory memory. Working memory, however, has two limitations. Firstly, it is

short-lived. Secondly, it is only capable of processing up to approximately seven things at a time

[9]. If this capacity is exceeded, then some or possibly all of the information is lost. Cooper gives

the following example of this phenomenon.

Example:

Attempt to add the following in your mind without the assistance of a calculator, pencil, or paper.

1) 46 2) 83,468,446

 + 37 93,849,937

 + 58,493,900

Most individuals are capable of performing the first addition without difficulty. However, the

second problem is almost impossible to solve mentally, even though the same process, addition, is

involved. The capacity of working memory was exceeded. If one were to employ paper and pencil

International Journal of Computing Academic Research (IJCAR), Volume 2, Number 5, October 2013

184

for the second problem, success would be likely since the paper formed an extension of working

memory, allowing one to record intermediate values and to not overload working memory.

Learning

Learning can be defined as the “encoding (storing) of knowledge and/or skills into long-term

memory in such a way that the knowledge and skills may be recalled and applied at a later time on

demand” (Cooper, 1998). Introductory computer programming, like mathematics, requires

declarative learning of abstract concepts and procedural learning acquired by practice. Procedural

learning retrieves declarative knowledge into working memory, refines it, and strengthens cognitive

structures. Declarative learning, in the field of computer science, can be thought of as skills

acquisition, and procedural learning can be thought of as learning to execute those skills.

Visual knowledge appears to be encoded and processed differently from verbal knowledge [13].

Learning can be increased when the same content is presented simultaneously in verbal and visual

representations in a way that facilitates associations between the two, especially if the verbal

presentation is in an aural medium and the visual medium is graphical. This suggests that memory

is partitioned into an auditory and a visual system and that working memory capacity can be

expanded when both systems are employed [4]. Other partitions are possible, too.

During recall, knowledge is retrieved into working memory. Retrieval plays a major role in

increasing the efficiency of the encoding and storage processes. With “rehearsal”, or repeated and

regular retrieval, recall processes gradually become “automated” and novices can progress towards

expert status. Experts employ automated retrieval processes to recall information from highly

organized structures in long term memory.

Cognitive Load Theory

Cognitive load theory is an instructional theory developed by psychologist John Sweller to describe

“the learning process in terms of an information processing system involving long-term memory,

which effectively stores all of our knowledge and skills on a more-or-less permanent basis, and

working memory, which performs the intellectual tasks associated with consciousness”[4]. This

theory, based on the above view of the mind Miller, provides a model of how the mind processes

information based on two views:

 Human working memory is limited; we can only keep in mind a few things at a time. This poses

a fundamental constraint on human performance and learning capacity.

 Two mechanisms to overcome the limits of working memory are:

1. schema acquisition, which allows us to chunk information into meaningful units, and;

2. automation of procedural knowledge [25].

The first mechanism provides information about how the mind understands and processes

information. For example, one typically chunks portions of a phone number to help remember it.

The phone number 235 4827 is much easier to remember than 2 3 5 4 8 2 7.

However, if meaning can be identified and used to define the chunks, remembering is significantly

enhanced.

International Journal of Computing Academic Research (IJCAR), Volume 2, Number 5, October 2013

185

Consider memorizing the following chunks of information.

Vers esth atdo notte achme nnew andtou ching trut hsdon otdes erveto bere ad.

If Voltaire’s quotation is chunked differently, we would have:

Verses that do not teach men new and touching truths do not deserve to be read.

The process of chunking information into meaningful units is quite similar to the way a computer

programmer would combine steps in a program into an abstraction [16]. For example, the individual

programming steps of finding the sum of a series of numbers, then dividing the sum by the number

of numbers would be combined together (i.e. chunked). The abstraction has a convenient name,

average and, for those individuals able to form the abstraction, only one of the approximately seven

things that can be retained in working memory is accounted for.

Schema formation is a very dynamic operation. Through building ever more complex schema by

assimilating portions of lower-level schemas into higher level schemas, skills are developed [19].

Children learning to read, for example, have to build schemas for letters that allow them to classify

an infinite variety of shapes into the limited number of characters in the alphabet [19]. This process

continues throughout life as words are formed from this collection of squiggles and meaning is

interpreted from words.

The second mechanism that overcomes working memory, automation of procedural knowledge,

deals with skills acquisition. Once a particular skill is acquired, automatic processing can bypass

working memory [19]. In other words, with enough practice, an activity can be carried out without

conscious processing. For example, many individuals reach a stage in driving where their

conscious, or working, memory is free for other activities. This automation of procedural

knowledge only occurs when one has acquired a skill.

Sweller et. al., gives the example of solving the following algebraic equation for a.

a+b = d
 c

Individuals who have acquired the needed algebraic skill will automatically know that one needs to

multiply both sides of the equation by c, and then subtract b. Some individuals, students studying

elementary algebra for example, would need to use working memory in an effort to recall the

appropriate rules.

Building problem-solving skills, be it in the domain of algebraic equations or computer

programming, have at its roots automation of procedural knowledge. Once a particular problem-

solving skill has been chunked and stored in long-term memory in a way that enables prompt

retrieval, the skill can be considered as being learned.

Cognitive load is the load placed on the cognitive system by performing a specific task. It can be

measured in several indirect ways, including:

 self-reporting (assigning load values on a scale),

 measurement of physiological activities (heart rate, for example),

International Journal of Computing Academic Research (IJCAR), Volume 2, Number 5, October 2013

186

 learner performance following treatment, and

 learner performance when a second task is performed concurrently with the primary task [19].

Literature Review

There seems to be scant research in how the cognitive load theory and these suggested changes

apply to computer science. Tuovinen and Sweller found that novices learning to apply a database to

specified problem domains substantially benefited from the inclusion of worked examples when

compared to students using discovery learning techniques if students had poor content schema.

However, discovery learning was found to be at least as useful, and possibly even superior, for

students who have well-developed content schema knowledge. Another study [7], by measuring the

transfer of knowledge learned in a Prolog language course to a second course using Lisp, found that

transfer of cognitive skills between complex domains is dependent on the level of schema

acquisition.

Two studies [24] examined the effect that two approaches to learning computer programming had

on learning outcomes. One group of students used an instructional strategy of working on

modifying and completing existing programs while the second group focused on developing new

programs. In both studies, students who were in the group completing existing programs

demonstrated significantly improved program development skills, including developing new

programs. There was considerable evidence that students in the completed programs group

experienced an optimal cognitive load. This study should have profound effects in computer science

education, but other than a push for both approaches in a lab setting, it seems to have little effect.

Perhaps the lack of clear support for completion tasks results from different levels in prior

knowledge in programming classrooms. In contrast to van Merrienboer’s findings, Nicholson and

Fraser found no significant difference between the two approaches when students already familiar

with programming learned a new language. In Van Merriënboer’s studies, the novice students may

have used the partially completed programs to construct new schemas whereas in Nicholson’s

study, the students may have had existing schemas to build on.

Although cognitive load theory appears to have received little interest in computer science

education research, it has been applied with considerable success in the associated field of

multimedia learning [10][8]. At the very least, it would make sense to incorporate multimedia

learning theories, based on cognitive load theory, into the ubiquitous fields of on-line learning and

software visualization.

Cognitive load theory and learning

The extent to which curriculum materials impose a load on working memory varies widely. “It

depends on the number of elements that must be processed simultaneously in working memory, and

the number of elements that must be processed simultaneously, in turn, depends on the extent of

element interactivity” [19].

For example, compare a student who is learning multiplication facts to one learning how to solve

equations in algebra. The student learning multiplication facts has quite a large number of facts to

International Journal of Computing Academic Research (IJCAR), Volume 2, Number 5, October 2013

187

place into long term memory, but most of the facts are independent of each other. However,

students solving equations in algebra have a larger load placed on working memory since they have

to recognize (1) that they can divide both sides of the equation by the same value, (2) that this

process does not change the equality, and (3) that it is more sensible to do this operation in some

situations before adding a quantity to or subtracting a quantity from both sides. The student solving

algebraic equations is dealing with facts with higher element interactivity which imposes a greater

load on working memory.

Cognitive load and skills acquisition

Skills in computer programming can be classified as recurrent and non-recurrent [23]. Recurrent

skills exhibit minimal variation in differing problem situations, for example, selection of a basic

language command. Non-recurrent skills vary from problem to problem, for example, structured

decomposition. According to van Merrienboer, instructional approaches should take these

differences into account.

Teaching in technical areas is often based on the formula of presenting a new topic, showing a few

examples, and assigning practice exercises. Some simple adjustments to the presentation-examples-

practice formula can accommodate cognitive load theory.

To learn recurrent skills, declarative knowledge of the abstract concepts on which the skills are

based, as well as procedural knowledge of the procedures or rules necessary to perform the skills,

should be simultaneously in working memory. Both the concepts and the procedures that use those

concepts to solve problems should be presented together. One approach to this is to partition the

information into small segments to prevent overload, then demonstrate application of the concepts

within each segment [24].

In contrast, non-recurrent skills can be taught by presenting heuristic approaches and strategies,

independent of domain reference [15]. For example, consider the following repetition rule.

In indeterminate looping,

use a WHILE loop when 0 iterations are possible, and

use a REPEAT UNTIL loop when at least 1 iteration is necessary.

In this situation of high element interactivity, presentation in the form of knowledge structures can

aid elaboration of existing schemas. For example, decomposition into a hierarchy of component

goals or plans is a form of knowledge structure (Figure 2).

International Journal of Computing Academic Research (IJCAR), Volume 2, Number 5, October 2013

188

Figure 2 Hierarchy as a form of knowledge structure

Examples provide explicit information to facilitate initial and correct schema formation [4] and can

initiate association of declarative and procedural knowledge. Following presentation, students can

work through several examples with the teacher or examine multiple problems with integrated

solutions, then immediately practice problems of the same type. By repeating this process with each

type of problem, students can build schemas, and reinforce learning by retrieving and refining those

schemas. Eventually practice with a mixed set of problems “elaborates” the schema even further by

strengthening associations. A variation on this approach is to provide partially-completed examples

for students to finish. Another is to gradually reduce the amount of information and support for

each task, so that as learning increases with practice, less information is required.

One approach to practicing recurrent skills is to decompose them into successively smaller

components in the form of domain-specific, algorithmic steps. Low element interactivity simplifies

initial schema construction. Each component is practiced individually, and then parts of the whole

are practiced until the entire skill can be integrated. For example arithmetic expressions are learned

with presentation of entire expressions, then separate presentation and examples of firstly constants,

then variables followed by operations. Next arithmetic expressions with constants and operations

are practiced. Finally, the three components of constants, variables and operations in complete

arithmetic expressions are practiced together.

It is generally agreed by computer science educators that introductory computer science courses

tend to have high attrition rates, and that the lack of problem-solving skills is a contributing factor.

Problem-solving is usually approached using means-ends analysis. With experts who can rely on

extensive schema acquisition and formation in long-term memory, this heuristic is applied by

reducing differences between the current problem state and the goal state. This strategy seems

especially effective in computer programming.

However, novices often apply it by working backwards from the goal to the initial state, then

forward to the goal, resulting in a high cognitive load [18]. Cognitive load could be reduced if

novices learning to apply means-ends analysis are given problems that have no goal [12]. Rather

than focusing on the desired result, one is forced to focus on the initial state. Since much of

computer programming is goal-oriented, this learning approach would appear to be difficult to

implement, but might have significant value in an intermediate learning stage.

International Journal of Computing Academic Research (IJCAR), Volume 2, Number 5, October 2013

189

Another approach to reducing cognitive load is to increase working memory capacity by utilizing

verbal and visual channels. However, redundant information can increase cognitive load by

increasing the number of associations that have to be made between the different sources of

information [3].

One effective approach is to integrate text into an associated graphic. By placing the text directly

within a diagram, the student is not forced to split attention between multiple sources. Modern

software, in the form of algorithm animation and multimedia presentation packages where text and

graphics can be added a piece at a time, gives much promise for this approach. In addition,

algorithm animation and multimedia give students’ power over the speed in which the material is

presented, and therefore redundant learning elements can be reduced.

Bearing in mind that verbal material can be in the form of text and can place demands on visual

resources if combined with graphics, the final approach to improve learning is by providing

multiple sensory input. Partitioning information to come from visual and aural sources can further

extend working memory [13]. Again multimedia and algorithm animation show promise in

developing this approach but also show that working memory can be overloaded by multiple media,

especially if it is superfluous to the learning content or asynchronous.

In summary, some of the possible strategies that could reduce cognitive load in introductory

computer programming courses are:

 partitioning of information into small segments, then simultaneous presentation of concepts and

procedures in demonstrations

 presentation of heuristic approaches and strategies, independent of domain reference

 organization of presentation of non-recurrent skills into knowledge structures

 presentation – repeated example and practice – broad practice

 broad practice using partially-completed examples

 gradual withdrawal of supporting information from practice tasks

 decomposition of practice tasks into small steps then gradual integration into a complete skill

 goal- free problem solving

 careful integration of text and graphics

 visual and aural sources for learning

 differentiated teaching [6]

Conclusion

The connection between cognitive load theory and the challenges faced by novice computer science

students has not been fully addressed. Research is needed to determine how the previously-

mentioned potential changes can improve computer science education [22]. Possibilities for future

research in this area include:

 using partially-completed examples of the form (presentation – repeated example and practice –

broad practice)

 exploring ways to apply means-ends analysis without goals

 replicating the Van Merriënboer studies in university environments

International Journal of Computing Academic Research (IJCAR), Volume 2, Number 5, October 2013

190

 investigating the use of multimodal instruction in learning complex computer programming

concepts

 investigating the identification of students’ prior schematic computing content knowledge and

the consequent adaptive teaching of further concepts and procedures using alternative

approaches best suited for students with differential expertise and prior knowledge

 Applying the cognitive load theory to the process of programming by professionals: Can

language constructs be designed to be more cognitively efficient in terms of the programmers

using them?

 Studying the effect of the use of abstraction on cognitive load.

 Identifying and classifying sources of high element interactivity in introductory computer

programming and developing strategies to reduce it.

References

[1] Baddeley, A. (1993). Working memory and conscious awareness. In A. F. Collins, S. E.

Gathercole, M. A. Conway, & P. E. Morris (Eds.), Theories of Memory (pp. 11-28). Hillsdale:

Lawrence Erlbaum.

[2] Beaubouef , T., Lucas, R., & Howatt, J. (2001). The UNLOCK system: enhancing problem

solving skills in CS-1 students. ACM SIGCSE Bulletin 33(2).

[3] Chandler, P. & Sweller, J. (1991). Cognitive load theory and the format of instruction.

Cognition and Instruction, 8:293-332.

[4] Cooper, G. (1998). Research into Cognitive Load Theory and Instructional Design at UNSW,

http://www.arts.unsw.edu.au/education/CLT_NET_Aug_97.HTML.

[5] Dale S., Wendy D., Juhani T. (2003). Applying Cognitive Load Theory to Computer Science

Education. 15
th
 Workshop of the Psychology of Programming Interest Group, Keele, UK.

[6] Gawande V., (2009). Differentiated e-Learning: The possible approaches, Special Issue of the

International Journal of the Computer, the Internet and Management, Vol. 18 No. SP1, Dec, 2010.

[7] Harvey, L. & Anderson, J. (1996). Transfer of declarative knowledge in complex information-

processing domains. Human-Computer Interaction, 11:69-96.

[8] Mayer, R. (2001). Multimedia Learning. Cambridge University Press, Cambridge.

[9] Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our

capacity for processing information. The Psychological Review, 63:81-97.

[10] Moreno, R. & Mayer, R. (2000) Meaningful design for meaningful learning: applying

cognitive theory to multimedia explanations. Proceedings Ed-Media 2000, Montreal, Canada.

[11] Nicholson, A & Fraser, K. (1997). Methodologies for teaching new programming languages: a

case study for teaching LISP. Proceedings 2nd ACSE Conference, Melbourne, Australia.

[12] Owen, E. & Sweller, J. (1985). What do students learn while solving mathematics problems.

Journal of Educational Psychology, 77:272-284.

International Journal of Computing Academic Research (IJCAR), Volume 2, Number 5, October 2013

191

[13] Pavio, A. (1990). Mental Representations: A Dual Coding Approach. New York: Oxford

University Press.

[14] Roberts, E., Kassianidou, M., & Irani, L. (2002). Encouraging women in computer science.

ACM SIGCSE Bulletin, 34(2):84-88.

[15] Robertson, L.A. (2000) Simple Program Design: A step by step approach Nelson Thomson

Learning, Melbourne.

[16] Shaffer, D. (2003). Cohesion, coupling, and abstraction. In H. Bigoli (Ed.) Encyclopedia of

Information Systems (pp. 127-139). New York: Academic Press.

[17] Shultz, G. (2000). Using the “boxes” support software in teaching CS1. The Journal of

Computing in Small Colleges 16(1):133-141.

[18] Sweller, J. (1988). Cognitive load during problem-solving: Effects on learning. Cognitive

Science, 12(2):257-285.

[19] Sweller, J., Van Merriënboer, J., & Paas, F. (1998). Cognitive architecture and instructional

design. Educational Psychology Review 10(3):251-294.

[20] Thweatt, M. (1994). CSI closed lab vs. open lab experiment. ACM SIGCSE Bulletin, 26(1):80-

82.

[21] Tuovinen, J. & Sweller, J. (1999). A comparison of cognitive load associated with discovery

learning and worked examples. Journal of Educational Psychology, 91(2):334-341.

[22] Tuovinen, J. (2000). Optimizing student cognitive load in computer education. Proceedings of

the Fourth Annual Australasian Computing Education Conference, Melbourne: ACM. pp. 235-241.

[23] Van Merriënboer, J. & De Croock, M. (1992). Strategies for computer-based programming

instruction: Program Completion vs. Program Generation. Journal of Educational Computing

Research, 8:365-394.

[24] Van Merriënboer, J. (1990). Strategies for programming instruction in high schools: Program

completion vs. program generation. Journal of Educational Computing Research, 6:265-285.

[25] Wilson, B. & Cole, P. (1996). Cognitive teaching models. In D. Jonassen (Ed.) Handbook of

Research in Instructional Technology. New York: Scholastic Press.

[26] Wilson, B. & Shrock, S. (2001). Contributing to success in an introductory computer science

course: a study of twelve factors. ACM SIGCSE Bulletin, 33(1):184-188.

