
233

International Journal of Computing Academic Research (IJCAR)
ISSN 2305-9184, Volume 5, Number 4 (August 2016), pp.233-238
© MEACSE Publications
http://www.meacse.org/ijcar

Performance Test of MPI on Raspberry Pi 2 Beowulf Cluster

Erdem Ağbahca and Adem Alpaslan Altun

Computer Engineering Department, Faculty of Engineering, Selçuk University, Turkey

Abstract

When a problem can be divided into subtasks and these non-sequential tasks were to run on different

processes at the same time on multiple CPUs over a cluster using Message Passing Interface (MPI),

performance of the application which solves the problem will be greatly enhanced. This kind of cluster can

be built with any type of computer, yet single board computers (SBC) are amongst the lowest power

consuming, the most mobile and easier to build with their small volumes and passive cooling. Raspberry Pi

is a SBC used in a wide variety of projects from small servers to home automation, image processing, auto-

navigating robots to wearable gadgets. Excluding these projects, Raspberry Pi can still be used as a

computer and can even be part of a computer cluster. In this study, we present timing records of test results

for finding all of the prime numbers in a range, over various process counts on a nine node Raspberry Pi 2

cluster.

Keywords: Message Passing Interface, Raspberry Pi, Parallel Programming, Cluster Computing

1. Introduction

MPI is a message-passing library addressing primarily parallel programming model, which helps in dynamic

process spawning, parallel I/O, data movement between processes, collective operations and remote-

memory access operations [1]. MPI is not an IEEE or ISO standard, yet it has become a de-facto standard

over the years it has been used and supported by many organizations and universities.

Raspberry Pi is a SBC [2] which is used in various types of projects for example; small non-CPU intensive

computing projects, home automation, TV boxes and jukeboxes, autonomous robots, home-type less traffic

demanding servers and alike. However, with the study conducted at Southampton University [3], Boise State

University [4] and Texas A&M University [5], Raspberry Pi’s proved to be useful for cluster computing for

educational, non-CPU intensive problems and most importantly where the budged matters since these SBCs

cost 35$ each. Raspberry Pi 2 Model B is equipped with 900MHz (stock overclocked) quad-core ARM

Cortex-A7 CPU, 1 GB of ram and 16 GB class 10 micro SD cards are used for this study. However, Pi

CPUs are overclocked to 1000MHz in this study.

In computing, performance is measured in floating-point operations per second (flops) and after a Beowulf

cluster is built, there are several ways to benchmark its performance, LINPACK [6] and High-Performance

LINPACK is the most used ones. Since these benchmarks output the cluster performance in terms of flops as

it can be seen in Iridis-Pi study [3], however the wall clock time performance of the cluster heavily depends

on algorithm used to solve a problem so that there will be many flops of computing power lost in the process

due to non-optimized algorithms. Because of that, we propose our test results in terms of seconds to actually

depict how long a problem took to be solved on to cluster. Yet, to show that the results scale with the rise of

process and node count, a problem which is suitable to divide in subtasks is needed, so first thing comes in

the mind is finding prime numbers in a range which gives nearly linear result when parallelized.

International Journal of Computing Academic Research (IJCAR), Volume 5, Number 4, August 2016

234

2. Related Work

Building a cluster is fairly easy when the size of computers and the power demanded by them are small.

SBCs can be stacked like a rack to ease carriage which can be seen in Fig 1. Raspberry Pi’s needs to be

powered from 5V micro USB port and can drain up to 2A. In this study, a dc power supply of 5V and 40A is

used to cover further expanding the cluster size for oncoming studies.

Fig.1 System Rack

Raspberry Pi’s have their own OS called Raspbian [7] a derivative of Debian Linux, distributed as image

files that needs to be written on SD card. After booting to the OS, an implementation of MPI should be

installed and MPICH (3.2 version) [8] is used for this purpose in this study. Instead of building MPICH for

each node, it can be built for the first node then the image of that SD card can be taken and written to other

SD cards. Hostnames should be changed to prevent further problems from happening. After preparing and

naming, each node should be connected through network to form the cluster and to achieve this a 100Mbit

3Com Switch (4400) is used to connect nodes to university network. Then one of the Pi’s was set as master

which is connected to a monitor, keyboard and mouse which contains a file of IP addresses for every Pi.

This architecture of the said system and final system build can be seen as whole in Fig 2.

Fig.2 System Architectural Diagram (Left) Actual System Image (Right)

International Journal of Computing Academic Research (IJCAR), Volume 5, Number 4, August 2016

235

Each Pi contains a quad-core CPU (4 threads total) which means 4 processes can run simultaneously and

that leads 9 Pi’s to run 36 processes at the same time. A program using MPI is coded in C and copied to

every node in the cluster using scp command. The program takes the maximum boundary as an input

argument which then calculates margin for each processes depending on the process count. If total process

count equals to 1 program acts serially but when it exceeds that, 1 process on the master which is called root

process is only responsible for the distribution of margins and collection of the count of the prime numbers

found. Rest of the available processes only finds the prime numbers after taking lower and upper bound of

their margin and returns the total count of prime numbers to root process. Timing measurement starts when

MPI initializes and ends when all processes returns the counts to root process. Since MPI runs the same

executable in all nodes and every node executes its partition of code which are divided by if clauses

depending of the rank (index of process). Writing code for just one executable eases the programming but

dividing the code for several ranks makes is harder to develop an algorithm. Algorithm for the program can

be seen in Fig 3 for root process and other processes.

Root Other

Begin

Read Input Arg (Maximum Boundary)
If Arg is NOT Divisible with Process Count
 -Exit Program
End If

Initialize MPI
Wait All Processes
Start Timer

If Process Count Equals 1
 -For X; 3 to Maximum Boundary
 --If X is Prime (Iterative Function)

 ---Increment local Count
 --End If
 -End For
Else
 -If Rank Equals 0 (Root Process)
 --For Each Process (Excluding Root)
 ---Calculate Margins (lower, upper bound)
 ---MPI Send Boundaries (Blocking)

 --End For
 --For Each Process (Excluding Root)
 ---MPI Receive Found Counts (Blocking)
 ---Sum Counts
 --End For
 -Else
 -….
 -End If
End If

Wait All Processes
IF Rank Equals 0 (Root Process)
 -Stop Timer
 -Write Elapsed Time & Prime Count toText File
End If

MPI Finalize
End

Begin

Read Input Arg (Maximum Boundary)
If Arg is NOT Divisible with Process Count
 -Exit Program
End If

Initialize MPI
Wait All Processes
Start Timer

If Process Count Equals 1
…
Else

 -If Rank Equals 0 (Root Process)
 -….
 -Else (Not Root Process)
 --MPI Receive Boundaries (Blocking)
 --For X; lowerbound to upperbound
 ---If X is Prime (Iterative Function)
 ----Increment local Count
 ---End If

 --End For
 --MPI Send local Count
 -End If
End If

Wait All Processes
If Rank Equals 0 (Root Process)
….
End If

MPI Finalize
End

Fig.3 Program Pseudo Code

International Journal of Computing Academic Research (IJCAR), Volume 5, Number 4, August 2016

236

3. Results

Timing values gathered for 1,4,8, …, 32, 36 processes when 1 process means totally serial program, until 5

processes computation is done only on the master node. Assuming 13 process is used; 4 process runs on

master node, 4 process runs on node1, 4 process runs on node2, and 1 process runs on node3. Tests are

repeated 10 times (D 1, …, D 10) for each process count with a waiting period of 5 minutes in between

every test to minimize ambient effects on cluster (ex. Temperature) and the average of these 10 timing

results are used as final result. Timing results are in seconds and rounded to nearest integer. These result can

be seen at Table 1.

Table.1 Timing Results of Tests

Process

Count
1 4 8 12 16 20 24 28 32 36

D 1 8046 3561 1605 1038 766 612 506 433 379 333

D 2 7985 3550 1605 1038 769 609 506 431 376 333

D 3 8009 3540 1604 1039 769 609 508 433 378 335

D 4 8028 3544 1598 1038 765 612 506 431 377 335

D 5 7983 3543 1597 1038 769 612 507 433 376 333

D 6 7980 3562 1597 1033 769 609 506 434 378 333

D 7 8026 3557 1601 1038 766 613 508 431 376 335

D 8 7983 3557 1605 1033 769 609 506 433 378 333

D 9 8035 3540 1604 1033 765 609 506 432 376 333

D 10 8026 3556 1597 1033 769 609 506 434 376 335

Average

Time(s)
8010 3551 1601 1036 767 610 506 432 377 333

When serially executed (1 process only) it takes 8010 seconds in average to find all of the prime numbers in-

between 3 and maximum boundary which is approximately 133 minutes but when run as 4 processes which

means 1 process distributes and 3 process computes this period drops down to 3551 seconds which is

approximately 59 minutes. This is closely 2.25 times speedup which cuts the wall clock time of execution

nearly %44. When it run as 8 process a speedup of 2.21 can be seen compared to previous 4 process. If we

were to calculate the timing theoretically for 8 process only 7 of them does computation and for 12 process

it is 11. Knowing that this algorithm is suitable for linear scaling if 7 computing processes takes 1601

seconds to finish then it should take 1018 seconds for 11 computing processes. However, timing results

shows that it’s slightly higher with 1036 seconds in average. This is caused by communication overhead

between processes which makes one of the processes wait another to get or send the results because the

previous rank hasn’t done it yet. Even with the system overhead there is still 1.54 times speedup when 8 and

12 processes compared. The reason of decrease in speedup when the process size gets bigger is that process

size increases 4 process for every node for every new test but the percentage of currently available resource

to these new processes is getting smaller. For example, when run as 16 processes it takes 610 seconds to

complete but when the process count is risen to 20 it drops 506 which means ~1.21 times speedup. This is

because that there were 15 computing processes and it has risen to 19 which brings ~1.29 times speedup

theoretically. So that considering system overhead for sending and receiving operation attained speedup is

completely normal and can still be considered linear. When run as 36 processes it takes 333 seconds to

complete in comparison to 8010 seconds of serial execution it is nearly %2405 performance gain in terms of

time. In order to provide better visual depiction, speedup for every process count is shown in Fig 4.

International Journal of Computing Academic Research (IJCAR), Volume 5, Number 4, August 2016

237

Fig.4 Timing Graph of Tests (Root Process Excluded)

If Fig 4 is reviewed as a summary, even the highly parallelizable problems can lose the immense grip they

have in advantage of speedup when the needed computational power is reached. Although, the speedup will

continue until a break point where the overhead is bigger than the computational time, yet it wouldn’t be as

advantageous as it is shown in the Fig 4. Considering 36 processes takes 333 seconds to complete the whole

computation, if the process count were risen to 72 processes, it would be taking 167 seconds theoretically

(ignoring communication overheads). Which would lead to 166 seconds of advantage over 36 processes

with twice the cost. However, it is not to be paid attention when compared to the 4 – 8 process difference of

1950 seconds. These results can be interpreted as when the barrier of the needed computational power is

reach, cluster performance loses the grip it has on performance advantage.

4. Conclusion

It is observed that Raspberry Pi’s can be used for complex computational problems by clustering them

together even though they are mostly used by hobbyist for different types of projects. With their small

volumes and weights which provides better mobility over conventional clusters and their low power

consumption and low cost, they can be used in specific areas which can benefit from these properties.

In addition, communication overhead can be lowered by using MPI only for inter-node communication and

doing rest of the multiprocessing work inside on a node using OpenMP. This will be studied for several

problems as future work.

5. References

[1] University of Tennessee, "MPI: A Message-Passing Interface Standard Version 3.1," 2015.

[2] Anonymus. "Raspberry," 21/03/2016; https://www.raspberrypi.org/.

[3] S. J. Cox, J. T. Cox, R. P. Boardman, S. J. Johnston, M. Scott, and N. S. O'Brien, “Iridis-pi: a low-

cost, compact demonstration cluster,” Cluster Computing-the Journal of Networks Software Tools

and Applications, vol. 17, no. 2, pp. 349-358, Jun, 2014.

[4] J. Kiepert. "Creating a Raspberry Pi-Based Beowulf Cluster,"

http://coen.boisestate.edu/ece/files/2013/05/Creating.a.Raspberry.Pi-Based.Beowulf.Cluster_v2.pdf.

[5] E. Wilcox, P. Jhunjhunwala, K. Gopavaram, and J. Herrera, “Pi-Crust: A Raspberry Pi Cluster

Implementation.”

https://www.raspberrypi.org/
http://coen.boisestate.edu/ece/files/2013/05/Creating.a.Raspberry.Pi-Based.Beowulf.Cluster_v2.pdf

International Journal of Computing Academic Research (IJCAR), Volume 5, Number 4, August 2016

238

[6] J. J. Dongarra, P. Luszczek, and A. Petitet, “The LINPACK benchmark: past, present and future,”

Concurrency and Computation-Practice & Experience, vol. 15, no. 9, pp. 803-820, Aug, 2003.

[7] Anonymus. "Raspberry Downloads," 21/03/2016; https://www.raspberrypi.org/downloads/.

[8] Anonymus. "MPICH | High-Performance portable MPI," 21/03/2016; https://www.mpich.org/.

https://www.raspberrypi.org/downloads/
https://www.mpich.org/

